森亿SSO门户C端程序调用接口文档

1. 森亿集成接口流程
Step1：配置发现，获取 Clienet id 和 Client Secret，用于完成整合流程需要的森亿 SSO 元数据信息
Step2：应用准备工作；
Step3：放置 SSO 登录按钮，测试联调；
Step4：进行外部登录验证，通过用户登录验证和授权，获取 Access Token； 将由系统后端发起跳转，进入森亿 SSO 服务对用户进行身份验证；
Step5：通过 Access Token 获取用户的 OpenID；
Step6：回调身份处理接口，来获得森亿 SSO 服务验证并传回的用户身份信息， 并基于这些信息实现森亿 SSO 用户与第三方系统用户的映射绑定（用户初始化）。
2.传递token给第三方程序
森亿SSo在登陆C端程序时，会传递一个token给对应.exe程序，token示例如下：
Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6ImZiOThkN2U1NGU3MGRkNmNjMmRkODkzNzZmOTI1ZTRlIiwidHlwIjoiSldUIn0.eyJuYmYiOjE1NjQ3MzQ2MzMsImV4cCI6MTU2NDgyMTAzMywiaXNzIjoiaHR0cDovL3Nzby1kZXYuc3kiLCJhdWQiOlsiaHR0cDovL3Nzby1kZXYuc3kvcmVzb3VyY2VzIiwicG9ydGFsLWFwaSJdLCJjbGllbnRfaWQiOiJwb3J0YWwiLCJzdWIiOiIxMSIsImF1dGhfdGltZSI6MTU2NDcxMzk5MCwiaWRwIjoibG9jYWwiLCJuYW1lIjoicG9ydGFsIiwic2NvcGUiOlsib3BlbmlkIiwicHJvZmlsZSIsInJvbGVzIiwicG9ydGFsLWFwaSJdLCJhbXIiOlsicHdkIl19.FYjblAL8P1aF4p3JAAz2zLeuFyCVYoMjvfrCG4lKj35U5jCEIeigO7_FLXH3llzG4kaINOryaFIZXIIYXMTigh4IL8GiGsQRDIkZMg1xxL-0VIMQ7QQ_mrcyVl2q-anOZTgeFz69RqltfkDNbPbAgXB3U80Tk89bv94KcQ8mwVnmxjj4exyd8OGmyZWVKd7j-vqdTTppORgOS72xk3UIEZO3vMVi9htYLyl8Q74CG4mOuoikxGQ4BuBDoN7xSrCVtnuEuJwtjgTe57a7YFmWg_h_c8sZAld4UquIThPScsYMGaRXeHR7lu7Aj8YHaaGIHbrSRRVMrrkhrL9mJrozvQ

3.C端程序验证token是否有效

[bookmark: _GoBack].exe程序在获取token后需要通过传入token和sso地址（http://192.168.188.218:32768/connect/userinfo）调用sdk验证token是否有效，在调用sdk后获得以下示例（Bearer 不需要剪切，token 写到 HEADER 里头去）
[image: edce7007efea62e8d6000217594e9f4]
返回参数示例：
{ "sub": "11",
 "nickname": "portal管理员", //用户名称
 "name": "portal", //用户ID
 "role": "portal-admin",
"preferred_username": "portal"
 }

4.C端程序通过示例判断用户登陆是否有效
C端程序通过返回的示例参数判断用户登陆是否有效，然后修改程序，是弹出报错还是允许登陆。
synyi-portal-client-master.zip

synyi-portal-client-master/.gitattributes

###
Set default behavior to automatically normalize line endings.
###
* text=auto

###
Set default behavior for command prompt diff.
#
This is need for earlier builds of msysgit that does not have it on by
default for csharp files.
Note: This is only used by command line
###
#*.cs diff=csharp

###
Set the merge driver for project and solution files
#
Merging from the command prompt will add diff markers to the files if there
are conflicts (Merging from VS is not affected by the settings below, in VS
the diff markers are never inserted). Diff markers may cause the following
file extensions to fail to load in VS. An alternative would be to treat
these files as binary and thus will always conflict and require user
intervention with every merge. To do so, just uncomment the entries below
###
#*.sln merge=binary
#*.csproj merge=binary
#*.vbproj merge=binary
#*.vcxproj merge=binary
#*.vcproj merge=binary
#*.dbproj merge=binary
#*.fsproj merge=binary
#*.lsproj merge=binary
#*.wixproj merge=binary
#*.modelproj merge=binary
#*.sqlproj merge=binary
#*.wwaproj merge=binary

###
behavior for image files
#
image files are treated as binary by default.
###
#*.jpg binary
#*.png binary
#*.gif binary

###
diff behavior for common document formats

Convert binary document formats to text before diffing them. This feature
is only available from the command line. Turn it on by uncommenting the
entries below.
###
#*.doc diff=astextplain
#*.DOC diff=astextplain
#*.docx diff=astextplain
#*.DOCX diff=astextplain
#*.dot diff=astextplain
#*.DOT diff=astextplain
#*.pdf diff=astextplain
#*.PDF diff=astextplain
#*.rtf diff=astextplain
#*.RTF diff=astextplain

synyi-portal-client-master/.gitignore

Ignore Visual Studio temporary files, build results, and
files generated by popular Visual Studio add-ons.

User-specific files
*.suo
*.user
*.userosscache
*.sln.docstates

User-specific files (MonoDevelop/Xamarin Studio)
*.userprefs

Build results
[Dd]ebug/
[Dd]ebugPublic/
[Rr]elease/
[Rr]eleases/
[Xx]64/
[Xx]86/
[Bb]uild/
bld/
[Bb]in/
[Oo]bj/

Mac cache/options directory
.DS_Store
*/.DS_Store

Visual Studio 2015 cache/options directory
.vs/
.vscode/
Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/

MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*

NUNIT
*.VisualState.xml
TestResult.xml

Build Results of an ATL Project
[Dd]ebugPS/
[Rr]eleasePS/
dlldata.c

DNX
project.lock.json
artifacts/

*_i.c
*_p.c
*_i.h
*.ilk
*.meta
*.obj
*.pch
*.pdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.svclog
*.scc

Chutzpah Test files
_Chutzpah*

Visual C++ cache files
ipch/
*.aps
*.ncb
*.opendb
*.opensdf
*.sdf
*.cachefile
*.VC.db

Visual Studio profiler
*.psess
*.vsp
*.vspx
*.sap

TFS 2012 Local Workspace
$tf/

Guidance Automation Toolkit
*.gpState

ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper
*.DotSettings.user

JustCode is a .NET coding add-in
.JustCode

TeamCity is a build add-in
_TeamCity*

DotCover is a Code Coverage Tool
*.dotCover

NCrunch
NCrunch*
.*crunch*.local.xml
nCrunchTemp_*

MightyMoose
.mm.
AutoTest.Net/

Web workbench (sass)
.sass-cache/

Installshield output folder
[Ee]xpress/

DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html

Click-Once directory
publish/

Publish Web Output
*.[Pp]ublish.xml
*.azurePubxml

TODO: Un-comment the next line if you do not want to checkin
your web deploy settings because they may include unencrypted
passwords
#*.pubxml
*.publishproj

NuGet Packages
*.nupkg
The packages folder can be ignored because of Package Restore
**/packages/*
except build/, which is used as an MSBuild target.
!**/packages/build/
Uncomment if necessary however generally it will be regenerated when needed
#!**/packages/repositories.config
NuGet v3's project.json files produces more ignoreable files
*.nuget.props
*.nuget.targets

Microsoft Azure Build Output
csx/
*.build.csdef

Microsoft Azure Emulator
ecf/
rcf/

Microsoft Azure ApplicationInsights config file
ApplicationInsights.config

Windows Store app package directory
AppPackages/
BundleArtifacts/

Visual Studio cache files
files ending in .cache can be ignored
*.[Cc]ache
but keep track of directories ending in .cache
!*.[Cc]ache/

Others
ClientBin/
[Ss]tyle[Cc]op.*
~$*
*~
*.dbmdl
*.dbproj.schemaview
*.pfx
*.publishsettings
node_modules/
orleans.codegen.cs

RIA/Silverlight projects
Generated_Code/

Backup & report files from converting an old project file
to a newer Visual Studio version. Backup files are not needed,
because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm

SQL Server files
*.mdf
*.ldf

Business Intelligence projects
*.rdl.data
*.bim.layout
.bim_.settings

Microsoft Fakes
FakesAssemblies/

GhostDoc plugin setting file
*.GhostDoc.xml

Node.js Tools for Visual Studio
.ntvs_analysis.dat

Visual Studio 6 build log
*.plg

Visual Studio 6 workspace options file
*.opt

Visual Studio LightSwitch build output
**/*.HTMLClient/GeneratedArtifacts
**/*.DesktopClient/GeneratedArtifacts
**/*.DesktopClient/ModelManifest.xml
**/*.Server/GeneratedArtifacts
**/*.Server/ModelManifest.xml
_Pvt_Extensions

LightSwitch generated files
GeneratedArtifacts/
ModelManifest.xml

Paket dependency manager
.paket/paket.exe

FAKE - F# Make
.fake/
/src/presentations/web/wwwroot
/src/services/webjob/lucene
appsettings.Development.json

CMake
CMakeCache.txt
CMakeFiles
CMakeScripts
Testing
Makefile
cmake_install.cmake
install_manifest.txt
compile_commands.json
CTestTestfile.cmake

JetBrains Rider
.idea/
*.sln.iml

synyi-portal-client-master/.gitlab-ci.yml

image: docker-mirror.sh.synyi.com/alpine:latest

variables:
 DOCKER_DRIVER: overlay2
 NUGET_APIKEY: ""
 NUGET_SOURCE: ""

stages:
- build
- test
- publish

build:
 image: docker-mirror.sh.synyi.com/microsoft/dotnet:2.1-sdk
 stage: build
 script:
 - get_commit_branch
 - echo $commit_branch
 - cd src
 - ls | cat | xargs -I {} printf "eval \"echo \"\"%s\" \$(git log %s | grep commit | wc -l)\"\"\n" {} {} | bash
 - ls | cat | xargs -I {} printf "eval \"echo \"\"%s\" \$(git log %s |
 grep commit | wc -l)\"\"\n" {} {} | bash |
 awk '{ print "sed -i " "'\''" "s/$(CommitHash)/."$2 "/g'\''" " ./"$1"/"$1".csproj" }' | bash -
 - cd ..
 - dotnet restore --configfile=./.nuget/NuGet.config
 - dotnet build -c Release
 only:
 - branches
 artifacts:
 untracked: true
 retry: 2

test:
 image: docker-mirror.sh.synyi.com/microsoft/dotnet:2.1-sdk
 stage: test
 script:
 - dotnet tool install -g dotnet-xunit-to-junit
 - export PATH="$PATH:/root/.dotnet/tools"
 - mkdir -p reports
 - xunit_test
 - cd reports
 - xunit_to_junit
 only:
 - branches
 dependencies:
 - build
 artifacts:
 reports:
 junit: reports/TEST-*.xml
 retry: 2

publish:
 image: docker-mirror.sh.synyi.com/microsoft/dotnet:2.1-sdk
 stage: publish
 script:
 - find . -name '*.nupkg' -type f | xargs -I{} dotnet nuget push {} -k $NUGET_APIKEY -s $NUGET_SOURCE || true
 only:
 - branches
 dependencies:
 - build
 retry: 2

.auto_devops: &auto_devops |
 function xunit_test() {
 find . -print0 | while IFS= read -r -d '' file
 do
 if [[$file =~ Tests.csproj$]]; then
 base=$(basename $file)
 dotnet restore ${file} --configfile=./.nuget/NuGet.config
 dotnet test ${file} --test-adapter-path:. --logger:"xunit;LogFilePath=../../reports/${base}.xml" -c Release --blame
 fi
 done
 }

 function xunit_to_junit() {
 find . -print0 | while IFS= read -r -d '' file
 do
 if [[$file =~ csproj.xml$]]; then
 base=$(basename $file)
 dotnet xunit-to-junit "${file}" "TEST-${base}"
 fi
 done
 }

 function get_commit_branch() {
 if [[$CI_COMMIT_REF_SLUG != 'master']]; then
 commit_branch="-${CI_COMMIT_REF_SLUG}"
 fi
 export commit_branch=$commit_branch
 }

before_script:
 - *auto_devops

synyi-portal-client-master/.nuget/NuGet.config

synyi-portal-client-master/.nuget/NuGet.exe

synyi-portal-client-master/Readme.md

第三方对接Portal
整体思路
1. 在第三方客户端机器上, 安装 Proxy 代理程序, 并运行 local_commandline_proxy.exe 程序
2. 第三方客户端 Install-Package Synyi.Portal.Client
3. 第三方客户端 实现 ClientHelper 抽象类的抽象方法
 a. GetToken 获取启动参数的Token
 b. SendToken 发送token 给服务端
4. 第三方服务端 Install-Package Synyi.Portal.Client
5. 第三方服务端 实现 ServerHelper 的抽象方法
 a. ReceiveToken 接收客户端发送过来的Token , 可以是一个Http接口或者其他通信方式
 b. GetUserInfoByToken 封装了验证token和获取用户数据的接口, 根据具体业务 , 在ReceiveToken中调用

具体的Example 参考 :
[winform example](http://git.sy/Platform/IAM/synyi-portal-winform)

接口说明
IClientForToken
```
/// <summary>
/// 从启动参数中获取代理程序[Proxy]传递过来的Token
/// </summary>
/// <returns>token</returns>
string GetToken();

/// <summary>
/// 异步 发送Token给Client对应的Server端
/// </summary>
/// <param name="token"></param>
/// <returns>返回结果</returns>
Task<string> SendTokenAsync(string token);

/// <summary>
/// 同步 发送Token给Client对应的Server端
/// </summary>
/// <param name="token"></param>
/// <returns>返回结果</returns>
string SendToken(string token);

```
IServerForToken

```
/// <summary>
/// 服务端接收客户端SendToken()发过来的Token
/// 服务端和客户端对接的Api接口
/// 需要根据当前的系统架构自行设计
/// </summary>
/// <returns></returns>
object ReceiveToken(string token);
```

ServerHelper

帮助类=> 获取用户信息
```
/// <summary>
/// 根据令牌获取用户信息
/// </summary>
/// <param name="token">令牌</param>
/// <param name="ssoEndpoint">授权地址</param>
/// <returns></returns>
string GetUserInfoByToken(string token, string ssoEndpoint)

```


synyi-portal-client-master/Synyi.Portal.Client.sln

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 15
VisualStudioVersion = 15.0.26124.0
MinimumVisualStudioVersion = 15.0.26124.0
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Synyi.Portal.Client", "src\Synyi.Portal.Client\Synyi.Portal.Client.csproj", "{8B2A39ED-E122-46D6-9934-F3791BD17B6D}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Synyi.Portal.Client.Tests", "test\Synyi.Portal.Client.Tests\Synyi.Portal.Client.Tests.csproj", "{DAB3C822-FBE7-4C3F-8745-F03026B778EE}"
EndProject
Global
	GlobalSection(SolutionConfigurationPlatforms) = preSolution
		Debug|Any CPU = Debug|Any CPU
		Debug|x64 = Debug|x64
		Debug|x86 = Debug|x86
		Release|Any CPU = Release|Any CPU
		Release|x64 = Release|x64
		Release|x86 = Release|x86
	EndGlobalSection
	GlobalSection(SolutionProperties) = preSolution
		HideSolutionNode = FALSE
	EndGlobalSection
	GlobalSection(ProjectConfigurationPlatforms) = postSolution
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Debug|Any CPU.Build.0 = Debug|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Debug|x64.ActiveCfg = Debug|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Debug|x64.Build.0 = Debug|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Debug|x86.ActiveCfg = Debug|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Debug|x86.Build.0 = Debug|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Release|Any CPU.ActiveCfg = Release|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Release|Any CPU.Build.0 = Release|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Release|x64.ActiveCfg = Release|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Release|x64.Build.0 = Release|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Release|x86.ActiveCfg = Release|Any CPU
		{8B2A39ED-E122-46D6-9934-F3791BD17B6D}.Release|x86.Build.0 = Release|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Debug|Any CPU.Build.0 = Debug|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Debug|x64.ActiveCfg = Debug|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Debug|x64.Build.0 = Debug|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Debug|x86.ActiveCfg = Debug|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Debug|x86.Build.0 = Debug|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Release|Any CPU.ActiveCfg = Release|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Release|Any CPU.Build.0 = Release|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Release|x64.ActiveCfg = Release|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Release|x64.Build.0 = Release|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Release|x86.ActiveCfg = Release|Any CPU
		{DAB3C822-FBE7-4C3F-8745-F03026B778EE}.Release|x86.Build.0 = Release|Any CPU
	EndGlobalSection
EndGlobal

synyi-portal-client-master/build.sh

#!/bin/bash

dotnet restore --configfile=./.nuget/NuGet.config

cd src
ls | cat | xargs -I {} printf "eval \"echo \"\"%s\" \$(git log %s | grep commit | wc -l)\"\"\n" {} {} | bash
ls | cat | xargs -I {} printf "eval \"echo \"\"%s\" \$(git log %s | grep commit | wc -l)\"\"\n" {} {} | bash| \
 awk '{ print "sed -i " "'\''" "s/$(CommitHash)/."$2 "/g'\''" " ./"$1"/"$1".csproj" }' | bash -

cd ..
dotnet build *.sln -c Release

cd ..
find . -name '*.nupkg' -type f | xargs -I{} nuget push {} -ApiKey $1 -Source $2 || true

synyi-portal-client-master/src/Synyi.Portal.Client/ClientHelper.cs

using System;
using System.Net.Http;
using System.Threading.Tasks;

namespace Synyi.Portal.Client
{
 /// <summary>
 /// 客户端 Token 操作接口
 /// </summary>
 public interface IClientForToken
 {
 /// <summary>
 /// 从启动参数中获取代理程序[Proxy]传递过来的Token
 /// </summary>
 /// <returns>token</returns>
 string GetToken();

 /// <summary>
 /// 异步 发送Token给Client对应的Server端
 /// </summary>
 /// <param name="token"></param>
 /// <returns>返回结果</returns>
 Task<string> SendTokenAsync(string token);

 /// <summary>
 /// 同步 发送Token给Client对应的Server端
 /// </summary>
 /// <param name="token"></param>
 /// <returns>返回结果</returns>
 string SendToken(string token);
 }

 /// <summary>
 /// 客户端帮助类
 /// </summary>
 public static class ClientHelper
 {
 public static string GetDataByToken(string token, string server)
 {
 using (var httpClient = new HttpClient())
 {
 var response = httpClient.GetAsync($"{server}?token={token}")
 .GetAwaiter()
 .GetResult();

 if (!response.IsSuccessStatusCode)
 {
 throw new Exception($"{response.StatusCode}:{response.ReasonPhrase}");
 }

 var json = response.Content.ReadAsStringAsync().GetAwaiter().GetResult();

 return json;
 }
 }
 }

}

synyi-portal-client-master/src/Synyi.Portal.Client/ServerHelper.cs

using System;
using System.Collections.Generic;
using System.IO;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;

namespace Synyi.Portal.Client
{
 /// <summary>
 /// 服务端 Token 操作帮助类
 /// </summary>
 public static class ServerHelper
 {
 /// <summary>
 /// 异步 根据令牌获取用户信息
 /// </summary>
 /// <param name="token">令牌</param>
 /// <param name="ssoEndpoint">授权地址</param>
 /// <returns></returns>
 public static async Task<string> GetUserInfoByTokenAsync(string token, string ssoEndpoint)
 {
 using (var httpClient = new HttpClient())
 {
 ssoEndpoint = ssoEndpoint.StartsWith("http://") ? ssoEndpoint : $"http://{ssoEndpoint}";
 var checkEndpoint = $"{ssoEndpoint}/connect/userinfo";
 httpClient.DefaultRequestHeaders.Add("Authorization", token);
 var data = await httpClient.GetAsync(checkEndpoint);

 if (!data.IsSuccessStatusCode)
 {
 throw new Exception("请求没有成功");
 }

 var json = await data.Content.ReadAsStringAsync();

 if (string.IsNullOrEmpty(json))
 {
 throw new Exception("返回数据为空");
 }

 return json;
 }
 }

 /// <summary>
 /// 异步 根据令牌获取用户信息
 /// </summary>
 /// <param name="token">令牌</param>
 /// <param name="ssoEndpoint">授权地址</param>
 /// <returns></returns>
 public static string GetUserInfoByToken(string token, string ssoEndpoint)
 {
 return GetUserInfoByTokenAsync(token, ssoEndpoint).GetAwaiter().GetResult();
 }
 }

 /// <summary>
 ///
 /// </summary>
 public interface IServerForToken
 {
 /// <summary>
 /// 服务端接收客户端SendToken()发过来的Token
 /// 服务端和客户端对接的Api接口
 /// 需要根据当前的系统架构自行设计
 /// </summary>
 /// <returns></returns>
 object ReceiveToken(string token);

 }
}

synyi-portal-client-master/src/Synyi.Portal.Client/Synyi.Portal.Client.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 <VersionPrefix>1.0.0$(CommitHash)$(commit_branch)</VersionPrefix>
 <GeneratePackageOnBuild>true</GeneratePackageOnBuild>
 <GenerateDocumentationFile>true</GenerateDocumentationFile>
 </PropertyGroup>

</Project>

synyi-portal-client-master/test/Synyi.Portal.Client.Tests/Synyi.Portal.Client.Tests.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>

 <IsPackable>false</IsPackable>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="15.9.0" />
 <PackageReference Include="xunit" Version="2.4.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.4.0" />
 <PackageReference Include="XunitXml.TestLogger" Version="2.0.0" />
 </ItemGroup>

 <ItemGroup>
	 <ProjectReference Include="..\..\src\Synyi.Portal.Client\Synyi.Portal.Client.csproj" />
	</ItemGroup>

</Project>

image1.emf
synyi-portal-client-master.zip

image2.png
No Environment <
ttp//sso.sy/connecty @ |+ | eee

GET v | rapsasytometuserno O s |

sthorization Headers (1) Pre-requestScript Tests

Key Value Description ess Bulk Edi

4 Authorization Bearer dabd85bd26104ab787a74ab7c1342e50fd95714b...

. Statue 401 Unauthorized

