[bookmark: _GoBack]宁化HIS9.0上线时需配合改造或配置的事项

1、 HIS结算前需要查询判断是否有无陪护未结算
直接查询sd_wph判断用户是否有未结算费用明细>0则提示先进行无陪护结算
select count(*) from sd_wph.VW_WPH_FYMX00 where
 ZYID00 = ${inHospId} --根据住院id号
 and JZDH00+0 = 0 --结账单号为0
 and CZRQ00 <= ${operationDate} --当前时间 如20221201

2、 单点登录配置说明
(1) 在以下两个系统添加无陪护入口：
1　 HIS费用管理
2　 电子病历护士站
备注：放置位置由各系统自定义
(2) 添加名字：
1　 HIS:【无陪护管理】
2　 电子病历护士站：【无陪护护士站】
(3) 点击入口过程说明：
1　 点击后单点登录的方式唤起HIS13的客户端，填入单点登录串跳转到无陪护系统（使用角色为1）
2　 点击后单点登录的方式唤起HIS13的客户端，填入单点登录串跳转到无陪护系统（使用角色为2）
C# 调用例子：
ProcessStartInfo processStartInfo = new ProcessStartInfo()
{
 FileName = workingDirectory + @"\Ylz.Client.exe",
 Arguments = "http://IP:端口/#/login?SSORequestInfo=m2+DcsLikjQiGxDVBZ/A0g=="
};
Process proc = Process.Start(processStartInfo);
Delphi调用例子
fURLStr:=fURLStr+getElementValueFromXML(FBaseHisServiceInteface.MyReOutPara,'AESValue');
ShellExecute(0, 'open', PChar(fEXEPath+'Ylz.Client.exe'), PChar(fUrlStr), nil, SW_MAXIMIZE);

(4) 单点登录串生成说明如下：
单点使用AES对称加密 key:PSYHKHEEYEOSHYSS
加密字符串说明：胸卡号&密码&角色
角色说明（1 收费员/财务人员 2 护士）
生成url地址：http://IP:端口/#/login?SSORequestInfo=m2+DcsLikjQiGxDVBZ/A0g==
无陪护正式环境IP:192.168.2.19 端口8080

备注：只能提供java工具类，无法提供其他编程语言工具类，请自行处理
例子：
---------加密前---------
aes加密前:9999&9999&0

---------加密后---------
aes加密后:m2+DcsLikjQiGxDVBZ/A0g==

[image: 66c4475f937e853454adb7c405333bc]

[image: ca5711b3ea2839c91cdb827db2ec325]

Java工具类

image1.png
TEfPadding ({IPCKS7) FHHHAZ, FTANERIPadding/THESR/E—ERATREN—1., MSSRERBIEHTOSERUTFRINERIE (KEYIV) . ATERFREUE,

DES TripleDes ~AES RSA SM2 SM4 SM3 .

99998999980 UTF-8 v m2+DesLikiQiGHDVBL/Adg==

ECB v
PKCS7 v
128bits v
PSYHKHEEYEOSHYSS

image2.png
ACO/JUTT R
TERAESIIEWRE T H, AESSKEARIFROERTGHE, BIRKESIS/9128/192/256bits, FAFEARKENER, FEBIIOX00EaE:. IVIE—FE, EaiEss, B
TEfPadding ({IPCKS7) FHfHAzE, FANERIPaddingTENGR/E—ERATREN—1, MSSEIRISHATERERUTFSRIINESIE (IKEY/V) . ATE:

DES TripleDes ~AES RSA SM2 SM4 SM3 .

m2+DosLikjQiGXDVBZ/AOg== UTF-8 v 99995999980

ECB v
PKCS7 v
128bits v

PSYHKHEEYEOSHYSS

AesUtil.java

 AesUtil.java

AesUtil.javapackage com.ylz.his.util;

import org.apache.commons.lang3.RandomStringUtils;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.util.Base64Utils;

import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

/**
 * AES加密工具类
 *
 * @author ACGkaka
 * @since 2021-06-18 19:11:03
 */
public class AesUtil {
 /**
 * 日志相关
 */
 private static final Logger LOGGER = LoggerFactory.getLogger(AesUtil.class);
 /**
 * 编码
 */
 private static final String ENCODING = "UTF-8";
 /**
 * 算法定义
 */
 private static final String AES_ALGORITHM = "AES";
 /**
 * 指定填充方式
 */
 private static final String CIPHER_PADDING = "AES/ECB/PKCS5Padding";
 private static final String CIPHER_CBC_PADDING = "AES/CBC/PKCS5Padding";
 /**
 * 偏移量(CBC中使用，增强加密算法强度)
 */
 private static final String IV_SEED = "1234567812345678";

 /**
 * AES加密
 * @param content 待加密内容
 * @param aesKey 密码
 * @return
 */
 public static String encrypt(String content, String aesKey){
 if(StringUtils.isBlank(content)){
 LOGGER.info("AES encrypt: the content is null!");
 return null;
 }
 //判断秘钥是否为16位
 if(StringUtils.isNotBlank(aesKey) && aesKey.length() == 16){
 try {
 //对密码进行编码
 byte[] bytes = aesKey.getBytes(ENCODING);
 //设置加密算法，生成秘钥
 SecretKeySpec skeySpec = new SecretKeySpec(bytes, AES_ALGORITHM);
 // "算法/模式/补码方式"
 Cipher cipher = Cipher.getInstance(CIPHER_PADDING);
 //选择加密
 cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
 //根据待加密内容生成字节数组
 byte[] encrypted = cipher.doFinal(content.getBytes(ENCODING));
 //返回base64字符串
 return Base64Utils.encodeToString(encrypted);
 } catch (Exception e) {
 LOGGER.info("AES encrypt exception:" + e.getMessage());
 throw new RuntimeException(e);
 }

 }else {
 LOGGER.info("AES encrypt: the aesKey is null or error!");
 return null;
 }
 }

 /**
 * 解密
 *
 * @param content 待解密内容
 * @param aesKey 密码
 * @return
 */
 public static String decrypt(String content, String aesKey){
 if(StringUtils.isBlank(content)){
 LOGGER.info("AES decrypt: the content is null!");
 return null;
 }
 //判断秘钥是否为16位
 if(StringUtils.isNotBlank(aesKey) && aesKey.length() == 16){
 try {
 //对密码进行编码
 byte[] bytes = aesKey.getBytes(ENCODING);
 //设置解密算法，生成秘钥
 SecretKeySpec skeySpec = new SecretKeySpec(bytes, AES_ALGORITHM);
 // "算法/模式/补码方式"
 Cipher cipher = Cipher.getInstance(CIPHER_PADDING);
 //选择解密
 cipher.init(Cipher.DECRYPT_MODE, skeySpec);

 //先进行Base64解码
 byte[] decodeBase64 = Base64Utils.decodeFromString(content);

 //根据待解密内容进行解密
 byte[] decrypted = cipher.doFinal(decodeBase64);
 //将字节数组转成字符串
 return new String(decrypted, ENCODING);
 } catch (Exception e) {
 LOGGER.info("AES decrypt exception:" + e.getMessage());
 throw new RuntimeException(e);
 }

 }else {
 LOGGER.info("AES decrypt: the aesKey is null or error!");
 return null;
 }
 }

 public static void main(String[] args) {
 String random = "PSYHKHEEYEOSHYSS";
 System.out.println("key:" + random);
 System.out.println();

 System.out.println("---------加密---------");
 String aesResult = encrypt("9999&9999&0", random);
 System.out.println("aes加密结果:" + aesResult);
 System.out.println();

 System.out.println("---------解密---------");
 String decrypt = decrypt(aesResult, random);
 System.out.println("aes解密结果:" + decrypt);
 System.out.println();
 }
}

image3.emf
AesUtil.java

